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Abstract

In this paper an experimental validation of a nondimensional analysis for a mixed-mode magnetorheological (MR)
damper is described. Based on the Bingham constitutive equation of an MR fluid, a nondimensional model describing
damping capacity of the MR damper is formulated using nondimensional parameters including the Bingham number,
nondimensional plug thickness, hydraulic amplification ratio, and equivalent viscous damping coefficient. The effects of
the Bingham number and the hydraulic amplification ratio on the nondimensional plug thickness and equivalent viscous
damping coefficient are analyzed. A mixed-mode MR damper is designed and fabricated to validate the relationships
between nondimensional parameters. The damper is tested under various loading conditions and current (applied magnetic
field intensity) levels. The nondimensional parameters and variables are measured experimentally, and the effectiveness of
the nondimensional analysis model for mixed-mode MR dampers is demonstrated. In addition, comparisons between
mixed and flow mode dampers are undertaken using this nondimensional analysis.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The field-dependent rheological changes in electrorheological (ER) or magnetorheological (MR) fluids are
primarily observed as a significant increase in the yield shear stress of the fluids, which can be continuously
controlled by the intensity of applied electric or magnetic field. The field-dependent yield stress of ER or MR
fluids can be effectively utilized in semi-active damping control systems. Semi-active devices utilizing ER or
MR fluids have the advantages of continuously controllable damping, quiet operation, simple configuration,
low power consumption, and high control stability [1,2]. ER or MR dampers have been shown to improve the
vibration isolation performances of vehicle suspension systems [3—5], helicopter rotor systems [6], landing gear
system [7], and structural systems [8—11].

ER or MR dampers have been designed on the basis of operating modes of the fluids: flow mode (Poiseuille flow)
[12-16], shear mode (Couette flow) [14], squeeze (squeeze-flow) mode [17,18], and mixed (Poiseuille and Couette flow)
mode [14,19]. Alternatively, a mixed-mode damper utilizes both shear and flow modes in producing damping force.
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Shear mode dampers rely on direct shear of ER/MR fluid due to relative motion between two plates where the
separation between the two plates is held constant. Flow mode dampers rely on pressurized flow along the axis
between two stationary plates, which form the walls of a duct or orifice, to develop damper force. To achieve the
same damper force, flow or mixed-mode dampers have the advantage that plates (duct walls) having smaller surface
areas than shear mode damper cases can be utilized to achieve the same damper force, so that flow mode dampers
can be smaller volume devices. Squeeze mode dampers rely on changes in the plate (duct wall) separation to compress
the material and induce flow from between the two plates. Thus, squeeze mode is limited to systems subjected to
small magnitude vibrations (low stroke) in order to avoid contact between the two plates. A key advantage of flow or
mixed-mode damper operation is that both large force and large stroke can be physically realized.

Various nondimensional models for the analysis of flow or mixed-mode dampers have been studied. For the
systematic and comprehensive study of damper characteristics, a nondimensional model that can characterize
and predict damper performance would be of great utility. Gavin et al. [20] presented an approximation to the
exact solution of a high order nondimensional polynomial to determine the pressure gradient in flow and
mixed-mode ER valves [21], and showed that this approximation is useful in analysis of flow or mixed-mode
dampers. A flow mode ER damper was tested to validate the proposed nondimensional analysis [12]. Stanway
et al. [1,13] studied a nondimensional analysis for a flow mode damper by considering dimensionless numbers
of Hedstrom number, Reynolds number, and a friction factor. In this case, a flow mode ER damper
was experimentally analyzed to show the effectiveness of the model. This model has not been extended to
mixed-mode damper analysis. Wereley et al. [14,15,22] presented a set of nondimensional groups, consisting of
Bingham number, nondimensional plug thickness, and equivalent viscous damping coefficient (dynamic
range). The effectiveness of the proposed nondimensional analysis was validated via experiments on flow and
mixed-mode ER dampers [14,15], as well as a flow mode MR valve [22]. Hong et al. [16] developed a set of
nondimensional groups, consisting of Bingham number, nondimensional geometric parameter, nondimen-
sional damping force, and dynamic range. This nondimensional analysis scheme was effectively applied to
design a flow mode ER damper.

As mentioned above, one author of this current study has conducted a nondimensional analysis of a mixed-
mode ER damper in previous research [14]. However, some key issues were not considered. First, the Bingham
number is defined as the ratio of the dynamic yield stress to the viscous stress [14]. Alternatively, the Bingham
number, which can be interpreted as a nondimensional velocity or shear rate, can be defined as a function of either
the piston velocity or the average velocity (or shear rate) of the fluid in the valve gap or duct. Hence, the impact of
nondimensionalization with respect to piston velocity or average duct velocity must be studied. Second, the piston
velocity is related to the average duct velocity by a hydraulic amplification ratio (ratio of cross-sectional piston to
duct area). Therefore, the impact of hydraulic amplification on damper force, and its role in interpreting the
appropriateness of each Bingham number definition should be examined. The Bingham number and the hydraulic
amplification ratio are important factors that determine damper characteristics of mixed-mode dampers.

Therefore, from these perspectives, we will examine further the nondimensional analysis of mixed-mode
dampers. To this end, a mixed-mode MR damper is configured and its nondimensional analysis is theoretically
constructed by using a set of nondimensional group, consisting of Bingham numbers, hydraulic amplification
ratio, nondimensional plug thickness, and equivalent (viscous) damping coefficient. On the basis of the
nondimensional analysis, mixed-mode damper characteristics are evaluated and compared with flow mode
damper characteristics. To validate the nondimensional analysis of the mixed-mode damper, an MR dashpot
damper is designed and fabricated. The relationships of the nondimensional plug thickness and the damping
coefficient as a function of both definitions of Bingham number are experimentally validated and the
effectiveness of the nondimensional analysis in predicting damper performance is demonstrated.

2. Nondimensional modeling
2.1. Mixed-mode damper
A nondimensional analysis of a mixed-mode dashpot damper featuring MR fluids is studied in this paper and a

schematic configuration of the damper is presented in Fig. 1. The MR damper consists of MR fluid reservoir,
plunger (or piston), annular gap, electromagnetic coil, flux guide, and housing. The electromagnetic coil supplies a
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Fig. 1. Schematic configuration of the mixed-mode MR damper.

magnetic field to the MR fluid. The plunger or piston is a loosely fitting piston that travels within the MR fluid
reservoir. The MR fluid flows through the annular duct formed by the reservoir wall and the piston outer diameter
as the piston moves. The plunger serves to directly shear the fluid between the reservoir wall and the piston wall, as
well as to induce pressurized flow through the annular duct. Therefore, the MR damper operates under both shear
and flow modes. If no magnetic field is applied, the MR damper only produces a force exerted by the fluid flow
resistance associated with the viscosity of the MR fluid. However, if the MR fluid is activated by the magnetic field,
the MR damper produces a controllable damping force due to the yield stress of the MR fluid. To simplify the
analysis, we will approximate the annular duct as a rectangular duct. If the annular gap is small relative to the
annular radius, then the error associated with hydrodynamic analysis is small. However, the errors associated with
approximating the radial field in the annular duct as a uniform field in the rectangular duct may have a large
impact [23]. We adopt a simple rectangular duct analysis [14] in order to develop physical and analytical insight
into the nondimensional behavior of MR dampers.

2.2. Constitutive model

The pressure drop, AP, developed via quasi-steady plunger motion can be obtained from force equilibrium
in a rectangular duct and is given by
d
AP=-S"1. (1)
dy
Here, 7 is the shear stress, y is the coordinate originating from the center of the duct, and L is the active length
of the duct. If the ratio of the plunger radius to the gap is large, the governing equation of Bingham plastic
flow in a rectangular duct can be applied to approximate mixed-mode flow through an annular duct [14,16,20].
Therefore, Eq. (1) is the starting point for the mixed MR damper analysis in this study. The rheological
behavior of MR fluid can be modeled as

T=1,s88Nn —du + —du |T| > |7,

= Ty88 dy ,Udy, vl

du

_dy=0’ |‘C|<|‘Cy| (2)

Here, 1, is the field-dependent yield shear stress, u is the fluid velocity, and u is the plastic viscosity.



402 S.R. Hong et al. | Journal of Sound and Vibration 312 (2008) 399-417

Vp r
<+—
A/
Region 3
Region 2 4 d
Y
Region 1 v

Fig. 2. Schematic diagram of fluid velocity profile in the gap inside the MR damper.

2.3. Velocity profile

A typical velocity profile of MR fluid flow through a rectangular duct is shown in Fig. 2. V), is the piston
velocity, d is the gap, and y,, and y,; are locations of the outer and inner edges or boundaries of the plug,
respectively. There are three distinct fluid regions exist. Region 1 (—d/2<y<—y,,) and region 3 (y,;<y<d/2)
are post-yield regions where |t|>17,, while region 2 (—y,,<y<y),;) is the pre-yield or plug flow region
where [7] <1,.

Since three distinct flow regions exist in the duct, the fluid velocity profiles of each region must be considered
separately. The velocity profile of each region can be obtained by direct integration after substituting Eq. (2)
into Eq. (1):

ui@)=—£y2+A[y+B[, i= 1,2,3. (3)
2ul

Here, subscript i represents the ith region. 4, and B, are integration constants to be determined by satisfying
velocity boundary and compatibility conditions for each region

d d
ui <— 5) =0, u(=yp) =0, w=us(y,), us <§> ==V #0,)=0. )

Satisfying these boundary conditions leads to the velocity profile as given below

d 2
()’+J’po)2 - <2_yp(1) ‘|3
AP (d :
w(y) =5— <§ - ypi> -V

2ul
d 2
- ypi)2 - (5 - ypi>

AP
u(y) = _2/17[4

ar

w) = ~37 -V )

2.4. Plug thickness

The plug thickness can be determined from Eq. (1) and appropriate shear stress boundary conditions.
Integrating Eq. (1) yields the shear stress in the gap as follows:
AP

v=—Fy+C (6)



S.R. Hong et al. | Journal of Sound and Vibration 312 (2008) 399-417 403

Here, C is integration constant to be determined using the shear stress boundary conditions

T(_ypo) = T}” T(ypi) = _Ty’ (7)
which leads to the system of equations
AP
Ty = Typo + C,
AP
— Ty = —Typ,- + C. (8)
Subtraction of the above two equations yields an expression for the plug thickness 9:
2Lz,
5:ypo+ypizv' (9)

Because the plug velocity is constant, the compatibility boundary condition for the constant velocity in the
region 2 is given by

u1(Vpo) = u3(Vy;)- (10)
Eq. (10) can be expressed by
_2uLlv,
yp()_ypi_AP(d_é)' (11)
The inner and outer plug boundary locations are determined from Egs. (9) and (11) as follows:
1 uLv,
Wi =3° T AP = 5)’
1 ULV,
yP"_25+AP(d—5)' (12)

2.5. Bingham numbers

The equivalent viscous damping can be expressed in terms of the Bingham number and the nondimensional
plug thickness o( = 6/d) [14]. The Bingham number can be defined as follows [14]:

Biy, = ——. (13)

In the above, the piston velocity, or wall velocity, V), over the gap, d, accounts for the shear rate of the fluid
in the gap. The Bingham number, Biy,,, is large when the yield shear stress, ,, is high, or the plastic viscosity,
u, and the piston velocity, V), are low. Therefore, the large Bingham number, Biy,, implies that the damper
operates at low speed or in a weakly post-yield condition. The Bingham number, Biy,, is small, when the
piston velocity, V), is high, or when the damper is operating in a strongly post-yield condition. The piston
velocity, V), affects the magnitude of the velocity distribution of the fluid inside the gap. When the piston
velocity, V), is low, the magnitudes of the velocity or shear rate distributions of the fluid are small. Thus, as the
plunger velocity, V,, decrease, overall velocity or shear rate of the fluid decreases, and the fluid behavior
approaches to a weakly post-yield condition.

The velocity of the fluid inside the gap is an actual indicator describing the post-yield condition, and the
average duct velocity of the fluid inside the gap, V, can be used as the velocity in the Bingham number.
Another definition of the Bingham number, considering the average duct velocity, V,, is given by [15,24]

Tyd
:u'Va' .

The Bingham number, Biy , incorporates the average velocity of the fluid through the gap, V,, which is not
directly measurable. But the Bingham number, Biy , directly accounts for the fluid behavior inside the gap.

Biy, = (14)
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On the other hand, the Bingham number, Biy,, incorporates the piston velocity, V), which is directly
measurable. Therefore, when the damper performance is analyzed with the consideration of the external
excitation, or plunger velocity, the Bingham number, Biy,, would be preferable. When the damper analysis is
focused on the fluid flow inside the gap, which is the direct indication of the Bingham plastic behavior of the
fluid, the Bingham number, Biy ,, is preferred. The average velocity of the fluid, V, in the Bingham number,
Biy,, can be applied to inspecting the flow characteristics of the fluid by using well-known nondimensional
variables such as Reynolds number. Although the Bingham numbers, Biy, and Biy , incorporate different
velocity terms, they provide common physical intuition. Both Bingham numbers being large implies that the
dampers operate at low speed or in a weakly post-yield condition. The Bingham numbers are both zero when
the dynamic yield shear stress is zero, as is nearly the case in the absence of field. In this work, nondimensional
analyses considering both definitions of the Bingham number will be treated and their influences on the
damping capacity of the damper will be analyzed.

2.6. Hydraulic amplification ratio

The velocities, V), and V,, are related by

. A
m:An:Z?% (15)

Here, A is the hydraulic amplification ratio or area ratio defined by the ratio of the piston head area, A,, to
the cross-sectional area of the gap, A, ( = bd). Also, b is the width of the duct (or the average circumference of
the annular duct). From Egs. (13)—(15), the relationship between the Bingham numbers is given by

Biy, = ABiy,. (16)
Note that these Bingham numbers yield different values at the same operating condition or damper shaft
speed.

2.7. Nondimensional velocity profile

A convenient nondimensional form of velocity profile Eq. (5) can be obtained by introducing the following:

2ul (2\*
Here, j is nondimensional gap coordinate and # is nondimensional velocity profile. From Egs. (5), (13) and
(17), the nondimensional velocity profiles of each region are expressed by

< 2 < 2
- 0 1 = 0 1
i =—(2f+0+ —— ] +(1-0- -— 1,
“o) ( Y 1 - 53le> ( 1 —5Ble)
z 2
= 0 1 = 1
() =(1-0+—=-—| —46—1,
0) ( +1—5mw> '

- 2 = 2
axwz—(w—5+—éj—L> +(1—5+—31 ?)-—6—L< (18)

Bi Vp

5=2, a=
d’

Given the nondimensional plug thickness, §, and the Bingham number, Biy,, the nondimensional velocity
profile, i, can be achievable. On the other hand, the nondimensional velocity profiles of flow mode damper are
given by [25-27]

m(y) = —(25 + 6y + (1 -5,
m(y) = (1 -5,
I3(y) = —(25 — 6y + (1 = d)". (19)
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2.8. Equivalent damping coefficient

The yield shear stress from Eq. (9) is expressed as

5d AP 5dF
2L 2LA

. = (20)

Here, F( = A, AP) is the damper force exerted on the mixed-mode damper. Using Eqgs. (13) and (20), the
equivalent viscous damping, Ceq, is obtained by

F  2ulLA, Bi Vo

Cog = — =
q Vp d2 (5

€2y

The relationship between nondimensional variables, that is the Bingham number, Biy,,, and nondimensional
plug thickness, , can be found by equating the total volume flux through the duct, Q, to the volume flux
displaced by the piston, Q,. The volume flux through the duct, Q4 is

Qi=01+0,+ 0s, (22)
where
3o | AP A
=b/ u(y)d 28 52
0, ap 1) dy = 24 ul (1—5)Bin
1bAPd3 5 1. 1sAPP &
=b dy = - L
0, /" ) dy =g T HE| $ AL m
- 2 -
d/2 1 bAPd - 5 - 1bAPS - 5 -
—b d 28 sy — 0 5= S+—2 15 @3
0; Lﬂw“’Mpm T R s v OGS

The total volume flux, Q,, equals the volume flux displaced by the piston head, Q,, so that

1 APd*4, §
Qd = Qp - AP VP - E ulL Bin : (24)
From Egs. (22)—(24), the relationship between the nondimensional variables is
14 4/1—=6/6(145/2) (4 + 1 2)_
(L d) VIR o
2(1 = 0)*(1+6/2)

Given the hydraulic amplification ratio, A, and the Bingham number, Biy,, the nondimensional plug
thickness, d, can be determined using a root finding algorithm. Eq. (25) has only one physically realizable
solution that satisfies 0<d<1.

Damping can be expressed by substituting the Bingham number, Biy,, of Eq. (25) into Eq. (21) and
rearranging Eq. (21) such that

1204, L <l+/1) 1+ \/1 —8/6(1+5/2)(A+1/2)7

Ceq = = = 26
“ & \2 2(1 = 86X (146/2) (26)
From Eq. (26), the damping coefficient defined by the ratio of the equivalent viscous damping, C.q, to the
Newtonian viscous damping, Cy, is given by
Co. 14+4/1=5/6(146/2)(A+1/2)7*
ALY / , 27)

Co 2(1-86)(1+6/2)
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where

12u4°L (1 -
= —4+ 4. 2
ao = (54 4) e8)

Note that Eq. (27) is the principal nondimensional representation of the damping capacity of the mixed-
mode MR damper.

Alternatively, an analogous set of nondimensional relationships can be obtained using the Bingham
number, Biy,. By substituting Biy, from Eq. (16) into Eq. (25), the relationship between the nondimensional
variables is

1 1—6/6(1465/2)(A+1/2)72
) AL L C LRSI R 00

24 2(1 = 8)*(145/2)
The equivalent damping equations accounting for the Bingham number, Biy , have the same forms as
Eqgs. (26)—(28) for the Bingham number, Biy,. As can be seen from Egs. (25) and (29), a given nondimensional
plug thickness corresponds to two different values of the Bingham numbers, Biy, and Biy,.
On the other hand, the damping coefficient for the flow mode damper is [14,15]

Cea _ !

65<1+

—_— T =7 = . 30
Co (1-6>*(146/2) 30)
The relationships between the nondimensional parameters in flow mode damper are [14,15]
. 5
64———5——-—=Biy,,
(1 =0)(149/2)
5 (31
6# == Bin.
(1 -0y (1+4/2)

The above nondimensional equations will be used to compare the characteristics between flow and mixed-
mode dampers. It is noted that the hydraulic amplification ratio does not appear in Eq. (30). Furthermore, the
nondimensional plug thickness equation with Bingham number, Biy , also does not contain the hydraulic
amplification ratio, 4. These imply that the Bingham number using duct velocity, Biy , provides a more
concise nondimensional analysis for flow mode dampers than does the Bingham number, Biy,, based on the
piston velocity.

3. Nondimensional analysis
3.1. Nondimensional velocity profile

From Eqgs. (18) and (25), the nondimensional velocity profile is a function of the nondimensional plug
thickness, J, and hydraulic amplification ratio, 4. For the case of 4 = 3, the nondimensional fluid velocity
profile is presented in Fig. 3(a). When the plug thickness, J, is zero, the nondimensional velocity profile is
parabolic, which is indicative of Newtonian shear flow. The velocity at the plunger side is not zero because the
plunger is moving with nondimensional velocity of —45/Biy,. As the plug thickness, 4, increases from zero,
the plug or pre-yield region extends and the plug velocity decreases. This implies that the flow resistance in the
gap or duct increases.

The nondimensional velocity profile for 4 = 27 is presented in Fig. 3(b). Comparing the profile for 4 = 27
to that for 4 = 3, it is clearly seen that the plunger side plunger velocity is close to zero. Therefore, when the
hydraulic amplification ratio, 4, is large, the fluid flow behavior of the mixed-mode damper approaches that of
the flow mode damper case.

The nondimensional velocity profiles for the flow mode damper are also presented in Fig. 3 and
compared with the mixed-mode damper cases. We observe the large difference in the velocity profiles
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when A4 =3. In contrast, the velocity profiles when A =27 are similar, which implies that the
dynamic characteristics of flow and mixed-mode dampers are similar when the hydraulic amplification ratio,
A, is large.

3.2. Damping coefficient versus nondimensional plug thickness

The damping coefficient, Ceq/Co, is represented as a function of the nondimensional plug thickness, 5, and

the hydraulic amplification ratio, 4, in Fig. 4. As the nondimensional plug thickness, §, increases, the damping
coefficient, C.q/Cy, also increases. On the other hand, the damping coefficient, C.q/Cy, versus the

nondimensional plug thickness, , is not much affected by the hydraulic amplification ratio, 4. Therefore,

the damping coefficient, Ceq/Co, is dominantly determined by the plug thickness, ¢. It is noted that as the
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hydraulic amplification ratio, A, increases, the damping coefficient, Ceq/Cop, of the mixed-mode damper
approaches to the flow mode damper case.

3.3. Nondimensional plug thickness versus Bingham numbers

The relationship of the nondimensional plug thickness, 5, and the Bingham number, Bi v,» with the influence
of the hydraulic amplification ratio, A, is presented in Fig. 5(a). As the Bingham number, Bi v, increases, the
nondimensional plug thickness § increases. By increasing the Bingham number, Bi v,» @ high nondimensional
plug thickness, J, can be obtained and approaches one. When the nondimensional plug thickness, J, is one, the
plug is fully developed inside the gap, and the flow does not occur. As the dynamic yield shear stress, 1),
increases or the piston velocity, V), decreases, the plug becomes larger. When the yield shear stress, t,, is
reduced to zero or the piston velocity, V), approaches infinity, the Bingham number, Biy,, and the
nondimensional plug thickness é approach zero. This is the case of Newtonian flow.

By increasing the hydraulic amplification ratio, A, the nondimensional plug thickness, , decreased. For a
given Bingham number, Biy,, or piston velocity, V), the increase of the hydraulic amplification ratio, A,
implies an increase in piston area, 4,, and average duct velocity, V,;. Thus, this results in an increase in shear
rate across the gap, and a decrease in the nondimensional plug thickness, o.

On the other hand, the gap, d, affects both the Bingham number, Biy,, and the hydraulic amplification
ratio, 4. Enlarging the gap, d, increases the Bingham number, , Biy,, and reduces the hydraulic amplification
ratio, A. Therefore, a higher nondimensional plug thickness, J, can be obtained by increasing the gap.

Fig. 5(b) presents the relationship of the nondimensional plug thickness, J, and the Bingham number, Biy 't
with the influence of the hydraulic amplification ratio, 4. The basic role of the Bingham number, Biy 4 1s the
same as the Bingham number Biy,. As the Bingham number, Biy , increases, the nondimensional plug
thickness, J, increases.

As the hydraulic amplification ratio, A_increases for a given Bingham number, Biy ,» the nondimensional
plug thickness, J, also increases. For a given Bingham number, Biy ,» With an average duct velocity, V,, a large
hydraulic amplification ratio, 4, implies that the piston area, 4, is large, or the piston velocity (or wall
velocity), V,, is low to satisfy flow continuity, so that the magnltude of fluid velocity distribution across the
duct decreases. Therefore, the plug can be easily developed when the hydraulic amplification ratio, A, is high.
Furthermore, when the hydraulic amplification ratio, 4, tends to infinity, a piston velocity, V,, approaches

—
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to zero. This implies that the mixed-mode damper characteristics reduce to those of the flow mode
damper case.

Although the tendencies of the nondimensional plug thickness, 0, with respect to the variation of the
hydraulic amplification ratio, A4, depend on the Bingham numbers, both nondimensional relations of Figs. 5(a)
and (b) are physically reasonable and give an insight into the analysis and design of the damper. The Bingham
number, Biy,, can provide useful insights on the damper design schemes by directly considering the external
loading condition such as piston velocity. If the Bingham number, Biy,, is given from fluid properties, gap,
and piston velocity, the appropriate hydraulic amplification ratio, A, can be easily chosen to meet a desired
nondimensional plug thickness, 5. On the other hand, the damper force generated in the duct inside the
damper is directly affected by the flow rate of the fluid through the duct. Therefore, the Bingham number,
Biy ,, represents directly the operating condition of the fluid inside the duct, and can be an absolute indicator
of the damper characteristics.

The relationships between the nondimensional parameters of the flow mode damper are presented in Fig. 5
for comparison with mixed-mode damper results. As the hydraulic amplification, A4, increases, the
nondimensional plug thicknesses, 5, of flow and mixed-mode dampers become closer for a given Bingham
numbers. This implies when the hydraulic amplification, A, is large, the relationships of nondimensional
parameters of flow model damper, which has a simple form, can be used successfully to analyze the mixed-
mode damper. On the other hand, when the hydraulic amplification, A4, is small, the mixed-mode damper
analysis should be used to analyze a mixed-mode damper.

3.4. Damping coefficient versus Bingham numbers

The relationship between the damping coefficient, _Ceq/ Cy, and the Bingham numbers, Bi Vp and Biy ’E with
the influence of the hydraulic amplification ratio, A, is presented in Figs. 6(a) and (b). As the Bingham
numbers, Biy, and Biy, increase, and the damping coefficients, Ceq/Co, also increase. When the Bingham
numbers tend to zero, as in the case of strongly post-yield flows, the plug thickness also tends to zero, and the
damping coefficient, C.o/Cy, approaches one. Thus, the equivalent viscous damping tends to the Newtonian
damping as Bingham number grows small.

For given Bingham numbers, Biy, and Biy , the damping coefficient, Ceq/Co, With respect to the hydraulic
amplification ratio, 4, show similar trends but vary quantitatively. This can be expected from the
nondimensional plug thickness, , with respect to the hydraulic amplification ratio, 4, as presented in Fig. 5.
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Fig. 6. Damping coefficient versus Bingham numbers: (a) Ceq/Co versus Biy, at various A and (b) Ceq/Cy versus Biy , at various A:(—)
mixed mode and (----- ) flow mode.
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The damping coefficients of the flow mode damper are also presented in Fig. 6. When the value of the
hydraulic amplification, A, is small, the difference between flow and mixed-mode damping coefficients are
significant. Thus, when we analyze the damping of a mixed-mode damper which has a small value of hydraulic
amplification, A, the mixed-mode damper model must be used.

4. Experimental validation
4.1. Mixed-mode damper design

For the experimental validation of the mixed-mode damper models, an MR dashpot damper was
manufactured and tested. If the hydraulic amplification ratio is large, or A> 1, the characteristics of the flow
and mixed-mode dampers are indistinguishable. But if the hydraulic amplification ratio is small, or 4> 1, the
mixed-mode damper must be analyzed using the mixed-mode damper model. Therefore, the MR dashpot
damper with small hydraulic amplification ratio, 4 = 2.71 was designed in this study. The geometry of the MR
dashpot damper was as follows: the active length of the duct, L = 10 mm, the piston head radius, r = 8.5 mm,
and the gap, d = 1.5mm. MR fluid filled in the damper was Lord Corporation MRF-132LD.

4.2. Experimental setup and testing

In order to measure the damper force, the damper was placed between a load cell and an electromagnetic
exciter. An accelerometer measured the acceleration of the exciter table, and the signal generated from this
accelerometer was fed back to the exciter controller for the regulation of the excitation velocity. The excitation
velocity was obtained by integrating the acceleration signal. When the shaker table moved in response to a
command signal from the exciter controller, a damping force was measured using the load cell. To generate
magnetic field across the gap of the annular duct in the damper, a current supply was used. The current
I applied to the electromagnetic coil ranged from 0.0 to 1.2 A in increments of 0.4 A, or the magnetic field,
applied across the annular gap, ranged from 0.0 to 20.7kA/m in increments of 6.9 kA/m. The excitation
velocities were sinusoidal with amplitudes, V, = 0.03, 0.05, and 0.07 m/s, and frequencies, f' = 20, 30, 40 Hz,
respectively. The total number of damper test conditions was 32(= 4 x 3 x 3).

4.3. Measured force

Figs. 7(a) and (b) show the force vs. velocity and force vs. displacement cycle data with respect to the
applied current. The excitation velocity amplitude and frequency were set to 0.07 m/s and 20 Hz, respectively.
From the force vs. velocity plot of Fig. 7(a), it is observed that the Bingham plastic behavior is manifested
which consists of the viscous damping force and field-dependent yield force. As the current increases, the yield
force also increases. Although loops arise due to fluid inertia effects in the high velocity region and compliance
effect in the low velocity region, the overall or average damper force behavior reflects the Bingham plastic
model. As the current increases the area within the force vs. displacement hysteresis cycle increases. The energy
dissipated by a damper over one vibration cycle is a measure of its damping capacity, and is given by the area
enclosed with the force vs. displacement cycle. As can be seen from Fig. 7(b), when the current is high, the area
within the force vs. displacement cycle is large, and this indicates the increase in damping or energy dissipation
by the damper.

Fig. 8(a) shows the force vs. velocity cycles with respect to excitation velocity frequencies of 20, 30, and
40 Hz. The velocity amplitude and current were set to 0.05m/s and 1.2 A, respectively. The (high speed) inertia
and (low speed) hysteresis loops have a dependency on the excitation frequency, but the behavior of the
damper yield force and post-yield damping is representative of the Bingham plastic model. The yield force and
post-yield damping were not very sensitive to changes in excitation frequency. Fig. 8(b) shows the force vs.
velocity cycles with respect to the excitation velocity amplitudes of 0.03, 0.05, and 0.07 m/s. The excitation
frequency and current were set to 30 Hz and 1.2 A, respectively. As the excitation velocity amplitude increased,
the post-yield damping decreased. The variation of the post-yield damping is dominated by the shear thinning
effect of the employed MR fluid and will be accounted for in the validation of the nondimensional model.
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4.4. Equivalent damping

The energy dissipated by an MR damper over one vibration cycle, U, is given by the integral

2n/w
U= deXp =/ FV,dt.
0

(32)

Here X, is the piston displacement and w is the radial frequency of the excitation. An equivalent viscous
damping, Cq, can be determined by equating the dissipated energy by the MR damper to that of an equivalent
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viscous damper as follows:

U

Coo =———
q )
anz

(33)
where X, is the amplitude of the piston displacement, X,

Fig. 9 shows the equivalent viscous damping, C,q, calculated by using measured data and Egs. (32) and (33).
It is clearly observed that the equivalent viscous damping is highest when the applied current is high and the
excitation velocity amplitude is low. The excitation frequency has minimal effect on the equivalent damping.
This implies the fluid inertia effects can be neglected in the damping analysis in this test frequency range. Thus,
the equivalent damping obtained by damper test reflects typical Bingham plastic behavior that characterized
by the field intensity and fluid velocity magnitude.

4.5. Bingham numbers

For the damper analysis using the nondimensional model, the Bingham numbers, Biy, and Biy, of
Egs. (13) and (14) should be obtained as a first step. For given Bingham numbers, Biy, and Biy,, and hydraulic
amplification ratio, 4, the nondimensional plug thickness, J, can be determined by numerlcally solving for the
roots of Egs. (25) and (29). And then, the equivalent viscous damping coefficient can be analytically obtained by
using Egs. (27) and (28). The parameters for the evaluation of the Bingham numbers related as follows. Because
the damper was tested under dynamic loading, the piston velocity, V), for the Bingham number, Biy,, was given
by the rms value of the excitation velocity. The average velocity of the fluid, V, for the Bingham number, Biy ,,
was also obtained by considering the amplification ratio, A(= 2.71), and the rms value of the excitation velocity.
Therefore, the rms velocities for the calculation of the Bingham numbers are given by

12
1 2n/w 5 v,
VP,rms = <M/O Vp dl) = ﬁs

AV,
Vd,rms = T;~

In the above, V, is the amplitude of the piston velocity, V,.

(34)
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4.6. MR fluid properties

The fluid properties, the viscosity and the yield shear stress, are also required for the determination of the
Bingham numbers. Fig. 10(a) shows the fluid viscosity found by using Eq. (25) and zero field damping of Fig. 9
at each average velocity of the fluid in the gap, V,;. When the average velocity of the fluid is high, the viscosity
of the fluid becomes low. This implies the employed fluid in this study exhibits shear thinning behavior.
Fig. 10(b) shows the yield shear stress of the fluid chosen by maximizing the correlation between the
experimental and analytical damping coefficients.
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Fig. 10. MR fluid properties used for the analysis: (a) zero-field viscosity and (b) yield shear stress.
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4.7. Damping coefficient

Using the experimental data and the analysis model, the damping coefficient, C.q/Cy, is plotted versus the
Bingham numbers, Biy, and Biy,, in Figs. 11(a) and (b). The analysis correlates well with the experiment by
using the velocity-dependent viscosity and field-dependent yield shear stress. Therefore, the effectiveness of the
nondimensional analysis for the mixed-mode MR damper has been proven. The damping coefficient, Ccq/Cy,
versus the nondimensional plug thickness, , obtained by experiment and analysis, is presented in Fig. 12, and
correlates well with each other. Fig. 13 shows the damping versus applied current, and the analysis and
experimental results agree well. Fig. 14 compares the damping forces obtained by experiment and analysis.
Although the damper model could not capture the behavior of the low velocity hysteresis loops and high
velocity inertia loops, it could favorably describe the Bingham plastic behavior of the damper force.
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Fig. 12. Experimental and analytical damping coefficients versus nondimensional plug thickness: (
mode; (A) experiment ¥, = 0.03m/s; () experiment V, = 0.05m/s; and (O) experiment V, = 0.07 m/s.
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5. Conclusion

A mixed-mode MR damper analysis was presented. Based on the nondimensional modeling and analysis
approach taken in this study, the following conclusions are made:

(1) On the basis of the Bingham constitutive equation of the MR fluid, a nondimensional model that can
favorably describe the mixed-mode operation of the fluid flowing through an annular duct was developed,
and the relationships between the nondimensional variables, such as Bingham numbers, the nondimen-
sional plug thickness, the hydraulic amplification ratio, and the equivalent damping coefficient, were
investigated analytically.

(2) Bingham numbers were defined by considering piston velocity or average duct velocity through the MR
valve. Both Bingham numbers have a role in describing the controllable damping capacity. The Bingham
number in terms of the piston velocity was useful when analyzing damper performance with consideration
of the external mechanical excitation, and the Bingham number in terms of the average duct velocity was
preferred for the analysis focusing on the fluid flow behavior inside the gap. A key conclusion was that the
Bingham number was shown to be the independent variable.

(3) The effect of the hydraulic amplification ratio on damping capacity of the damper was also investigated.
The nondimensional plug thickness and the damping coefficient can be expressed as a function of either
Bingham number and the hydraulic amplification ratio. The analysis of the mixed-mode damper was
compared with the flow mode damper case, and the results show that the mixed-mode damper analysis
results approach those of the flow mode damper analysis as the hydraulic amplification ratio increases.
Therefore, when the hydraulic amplification ratio is small, the mixed-mode damper must be analyzed using
the mixed-mode damper analysis.

(4) To validate the nondimensional model of the mixed-mode damper, an MR dashpot damper, featuring a
relatively small hydraulic amplification ratio, was designed and fabricated. The damping coefficient, the
nondimensional plug thickness, and Bingham numbers were calculated by using the MR fluid properties,
the gap geometry, the measured shaft velocity and the damper force. It was observed that the
nondimensional analysis correlates well with experiment.

Note that since ER fluids show similar mechanical behaviors (so-called Bingham characteristics) to MR
fluids in response to external inputs, the conclusions presented and observed in this study can be
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straightforwardly applied to an ER dashpot damper. However, in the process of the implementation of ER
and MR dampers, there are differences. For MR dampers, it is necessary to configure electromagnetic coil
windings to produce a magnetic field input (proportional to the magnitude of a current over the gap) to
activate MR fluids. As a result of the coil windings in MR dampers, there exists both passive duct length and
an active duct length, the sum of which equals the total duct length (see Fig. 1). However, for ER dampers, ER
fluids are activated by applying an electric field (defined by the magnitude of a voltage across the gap). One-
side wall of the gap is connected to the positive (+) voltage input and the other side is connected to the
negative (—) voltage input, and then an electric field input occurs across the gap over the entire length of the
electrodes in an ER damper. As a result, in ER dampers, the active duct length, L, is the same as the total duct
length. Thus, the analyses of this study can be applied to both classes of dampers as long as the correct active
length is used.
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